
Playing Server Hide and Seek

Lasse Øverlier Paul Syverson
Norwegian Defence Naval Research

Research Establishment Laboratory

lasse.overlier@ffi.no
http://www.syverson.org

Location Hidden Servers

 Alice can connect to Bob's server without knowing where it
is or possibly who he is

 Who needs this?

Are Hidden Servers Safe?

 Later on we'll tell you how hidden services, such as
torcasting are set up

 But how safe are they?

Are Hidden Servers Safe?

 Later on we'll tell you how hidden services, such as
torcasting are set up

 But how safe are they?

 We will show how someone with a single machine can
quickly find any hidden server...

 Rather they previously could: before the countermeasures
we will describe were implemented

Talk Outline

 Hidden servers in brief: Demo Setup
 Motivation: Why anonymous communication?

– Personal privacy, Corporate and governmental security
 General overview of practical anonymous communication
 Overview of Tor: Third generation Onion Routing
 Hidden servers in more detail
 Description of our attacks on hidden servers

– Timing, Round Trip Time, Client, Statistical, Two Nodes Attack
 Experimental results of our attacks
 Countermeasures

– What's Implemented, what's not
 Demo Results and Failures
 Conclusions and Future Work

Credits

 Some slides on mixes cribbed from Ari Juels (with
permission)

 Tor, Generation 2 Onion Routing and Hidden Service
Design
– with Roger Dingledine and Nick Mathewson
– Roger and Nick did all the implementation
– Based on original Onion Routing systems done with
David Goldschlag and Michael Reed

 Numerous research predecessors and
contemporaries: ZKS Freedom, JAP Webmixes,...

 Funding by ONR, DARPA, and EFF
 Lots of volunteers contributing to open source Tor
code, running nodes, running hidden services, etc.

 In a Public Network (Internet):
 Packet (message) headers identify recipients
 Packet routes can be tracked

Encryption does not hide routing information.

Initiator

Public Network

Responder

Public Networks are Vulnerable to
Traffic Analysis

Who Needs Anonymity?

 Political Dissidents, Whistleblowers, Censorship resistant
publishers

 Socially sensitive communicants:
– Chat rooms and web forums for abuse survivors, people with
illnesses (diabetes-people.de)

 Law Enforcement:
– Anonymous tips or crime reporting
– Surveillance and honeypots (sting operations)

 Corporations:
– Fraud, abuse, safety reporting. Sarbanes-Oxley law etc.
– Who's talking to the company lawyers? Are your employees
looking at monster.com?

– Hide procurement suppliers or patterns
– Competitive analysis

 You:
– Where are you sending email (who is emailing you)
– What web sites are you browsing
– Where do you work, where are you from
– What do you buy, what kind of physicians do you visit, what
books do you read, ...

Who Needs Anonymity?

 Government

Who Needs Anonymity?

 Open source intelligence gathering
− Hiding individual analysts is not enough
− That a query was from a govt. source may be sensitive

 Defense in depth on open and classified networks
− Networks with only cleared users (but a million of them)

 Dynamic and semitrusted international coalitions
− Network can be shared without revealing existence or
amount of communication between all parties

 Elections and Voting

Government Needs Anonymity?
Yes, for...

 Networks partially under known hostile control
– To attack comm. enemy must take down whole network

 Politically sensitive negotiations
 Road Warriors
 Protecting procurement patterns
 Homeland Security Information to/from municipalities,
industry,...

 Anonymous tips (national security, congressional
investigations, etc. In addition to law enforcement)

Government Needs Anonymity?
Yes, for...

 Virtual Hidden Networks
– Traditional VPNs are not private
– Anyone can see the network
– Often adversary can see amount of communication
– Onion Routing can provide anonymity to hide existence
of private network and reduce countermeasure cost

Existing Protections Can be Improved
by Anonymity

Location Hidden Servers

 Are accessible from anywhere
 Resist censorship
 Require minimal redundancy for resilience in denial of
service (DoS) attack

 Can survive to provide selected service even during full
blown distributed DoS attack

 Resist attack from authorized users
 Resistant to physical attack (you can't find them)

Who Needs Anonymity?

 And yes criminals

Who Needs Anonymity?

 And yes criminals

But they already have it.
We need to protect everyone else.

Anonymity Loves Company

 You can't be anonymous by yourself
– Can have confidentiality by yourself

 A network that protects only DoD network users won't hide
that connections from that network are from Defense Dept.

 You must carry traffic for others to protect yourself

 But those others don't want to trust their traffic to just one
entity either. Network needs distributed trust.

Focus of Tor is anonymity of the
communication pipe,
not what goes through it

Basic Mix (Chaum ‘81)

Server 1 Server 2 Server 3

PK1 PK2 PK3

Encryption of Message

PK1 PK2 PK3

message

Ciphertext = EPK1[EPK2[EPK3[message]]]

Server 1 Server 2 Server 3

m1

m2

m3

m2

m3

m1

decrypt
and

permute

m2

m1

m3

decrypt
and

permute

decrypt
and

permute
m2

m3

m1

Basic Chaum-type Mix

Server 1 Server 2 Server 3

m3
?

One honest server preserves privacy

What if you need quick interaction?

 Web browsing, Remote login, Chat, etc.

 Mixnets introduced for email and other high latency apps

 Each layer of message requires
expensive public-key crypto
and expensive mixing delays

• Channels appear to come from proxy, not true originator
• Appropriate for Web connections, etc.:

SSL, TLS, SSH (lower cost symmetric encryption)
• Examples: The Anonymizer
• Advantages: Simple, Focuses lots of traffic for more anonymity
• Main Disadvantage: Single point of failure, compromise, attack

anonymizing proxy

Basic Anonymizing Proxy

Onion Routing
Traffic Analysis Resistant Infrastructure

 Main Idea: Combine Advantages of mixes and proxies
 Use (expensive) public-key crypto to establish circuits
 Use (cheaper) symmetric-key crypto to move data

– Like SSL/TLS based proxies
 Distributed trust like mixes

Responder

Client
Initiator

Network Structure

Internet

 Onion routers form an overlay network
– TLS encrypted/authenticated connections

 Proxy interfaces between client machine and onion routing
overlay network

Tor

Tor

The Onion Routing

Tor

Tor's Onion Routing

Client
Initiator

Tor Circuit Setup
• Client Proxy establishes session key + circuit w/ Onion Router 1Onion Router 1

Client
Initiator

Tor Circuit Setup
 Client Proxy establishes session key + circuit w/ Onion Router 1Onion Router 1
 Proxy tunnels through that circuit to extend to Onion Router 2Onion Router 2

Client
Initiator

Tor Circuit Setup
• Client Proxy establishes session key + circuit w/ Onion Router 1Onion Router 1
• Proxy tunnels through that circuit to extend to Onion Router 2Onion Router 2
• Etc

Client
Initiator

Tor Circuit Usage
• Client Proxy establishes session key + circuit w/ Onion Router 1Onion Router 1
• Proxy tunnels through that circuit to extend to Onion Router 2Onion Router 2
• Etc
• Client applications connect and communicate over Tor circuit

Client
Initiator

Tor Circuit Usage
• Client Proxy establishes session key + circuit w/ Onion Router 1Onion Router 1
• Proxy tunnels through that circuit to extend to Onion Router 2Onion Router 2
• Etc
• Client applications connect and communicate over Tor circuit

Client
Initiator

Tor Circuit Usage
• Client Proxy establishes session key + circuit w/ Onion Router 1Onion Router 1
• Proxy tunnels through that circuit to extend to Onion Router 2Onion Router 2
• Etc
• Client applications connect and communicate over Tor circuit

Where do I go to connect to the
network?

 Directory Servers
− Maintain list of which onion routers are up, their locations,
current keys, exit policies, etc.

− Directory server keys ship with the code
− These directories are cached and served by other servers, to
reduce bottlenecks

Some Tor Properties
 Simple modular design, Restricted ambitions

− 40-50K lines of C code
− Well documented
− Even servers run in user space, no need to be root
− Just anonymize the pipe

 Can use, e.g., privoxy as front end if desired to anonymize data
− SOCKS compliant TCP: includes Web, remote login, mail,
chat, more

 No need to build proxies for every application
− Flexible exit policies, each node chooses what
applications/destinations can emerge from it

 Lots of supported platforms:
Linux, BSD, MacOS X, Solaris, Windows

Numbers and Performance

 Running since October 2003
• About 250 nodes scattered through six continents
• Hundreds of thousands (?) of users
• Network processing c. 30 MB/sec application traffic
• Network has never been down since initial deployment

running Tor servers over last 15
months

Traffic rate over last 15 months

Location Hidden Servers

 Alice can connect to Bob's server without knowing where it
is or possibly who he is

 Already told you why this is desirable, but...

 How is this possible?

Location Hidden Servers
1. Server Bob creates onion routes to Introduction Points (IP)
(All routes in these pictures are onion routed through Tor)

Bob's
Server

Introduction
Points

Alice's
Client

Location Hidden Servers
1. Server Bob creates onion routes to Introduction Points (IP)
2. Bob publishes his xyz.onion address and puts Service Descriptor
incl. Intro Pt. listed under xyz.onion

Bob's
Server

Introduction
PointsService

Lookup
Server

XYZ Service

①

①
①

②

Alice's
Client

Location Hidden Servers
2'. Alice uses xyz.onion to get Service Descriptor (including Intro Pt.
address) at Lookup Server

Service
Lookup
Server

Bob's
Server

Introduction
PointsXYZ Service

①

①
①

②

②

Alice's
Client

Location Hidden Servers
3. Client Alice creates onion route to Rendezvous Point (RP)

Bob's
Server

Introduction
Points

Rendezvous
Point ①

①
①

Service
Lookup
Server

②

②

③

Alice's
Client

Location Hidden Servers
3. Client Alice creates onion route to Rendezvous Point (RP)
4. Alice sends RP addr. and any authorization through IP to Bob

Bob's
Server

Introduction
Points

Rendezvous
Point ①

①
①

Service
Lookup
Server

②

②

③
④

Alice's
Client

Location Hidden Servers
5. If Bob chooses to talk to Alice, connects to Rendezvous Point

Bob's
Server

Introduction
Points

Rendezvous
Point ①

①
①

Service
Lookup
Server

②

②

③
⑤

④

Alice's
Client

Location Hidden Servers
5. If Bob chooses to talk to Alice, connects to Rendezvous Point
6. Rendezvous point mates the circuits from Alice and Bob

Bob's
Server

Introduction
Points

Rendezvous
Point ①

①
①

Service
Lookup
Server

②

②

③
④

⑤
⑥

Alice's
Client

Location Hidden Servers

Bob's
Server

Rendezvous
Point

Final resulting communication channel

Location Attacks Outline

 Attack Types
 Attack Scenario
 Timing
 Round Trip Time
 Statistical Attack
 Client/Server challenge
 Two Node Attack
 Tor features

Hidden Services Attacks

 Locate server hosting a known location hidden service
 Attacks we will not discuss:

– locate unknown location hidden services
– locate user of our location hidden service
– locate user of a publicly known location hidden service
– locate user of an unknown location hidden service
– identify list of publicly available hidden services
– adding multiple nodes controlled by one entity
– DoS - shutdown parts of the network

Normal Scenario Closeup

Client

Rendezvous
Point

Hidden
Service 1 2 3

Client Tor-connection

HS Tor-connection

1

2

 We want to identify the situation shown above
– Being used as first node by the location hidden service

Attack Scenario Closeup

Same node

Client

Rendezvous
Point

Hidden
Service Server 2 3

Direct Connection To RP

HS Tor-connection

Timing

Same node

Client

Rendezvous
Point

Hidden
Service Server

 Client part can enforce any traffic pattern when sending
data and the response is equally easy to tamper with at
server part

 Combination makes circuit “easily” identifiable
 Know when we are on the path between HS and RP

Round Trip Time

 RTT may reveal distance to Hidden Service

Round Trip Time (2)

Statistical Attack
 If identified by Timing Attack as part of a specific circuit:

– More likely to be contacted by originator than by any other node in
circuit

– One of three positions, 33% chance of either, BUT
 in first position all connections are from same IP address
 in second and third position the connections are coming from random
nodes

– Meaning more than 1/3 of all connections are coming from the
Hidden Server

Same node

Client

Rendezvous
Point

Hidden
Service Server 2 3

Direct Connection To RP

Two Node Attack

 In current design the Client selects RP
 If Client also controls RP, attacker will easily identify the last
node in HS circuit towards RP

 After identified as part of circuit by Timing Attack, the attacker
is able to confirm immediately when located as node 2 or 3

Same node

Client

Rendezvous
Point

Hidden
Service Server 2 3

Direct Connection To RP

Client/Server Separation
 After confirming participation in circuit by Timing Attack
 Hidden Server as Tor Server

– Listed. Identifiable as “one of the Tor nodes”
– Requires access through public IP-address
– Hides hidden service traffic in other Tor traffic

 Hidden Server as external Client
– Not a part of the listing in the Directory Server
– Can be used behind a NAT/firewall with ease
– Immediately identified as Hidden Service if next to attacker

Same node

Client

Rendezvous
Point

Hidden
Service Server 2 3

Direct Connection To RP

Tor Feature

 When selecting nodes towards Rendezvous Point, the last
node was always an exit node

 Attacker using a middle-man node – never chosen as next to
RP

 If identified in circuit – always as node 1 or 2
– See Round Trip Time graph

 Confirmed when our Statistical Attack found >50% of
connections to be directly from Hidden Service and none
connecting to the Rendezvous Point

 This feature is now removed from Tor code base as a result of
our analysis

Countermeasures

 Dummy Traffic
 Increased path length
 “Helper/Entry/Contact nodes”

– Random
– Friendly
– Layered

Dummy Traffic

 Often suggested
 Expensive
 Does not resist active attacks in low latency systems

– Easy to enforce a timing signature when inside a path

Increased path length

 Set default number of nodes between Hidden Server and
Rendezvous Point to 4 (not 3)

 Will help on Two Node Attack (Rendezvous Point selection)
– but not eliminate the problem

 Will not help on:
– Timing and RTT attack
– Predecessor Attack
– Client/Server separation

 Increases latency and reduces available bandwidth in network

Helper/Entry/Contact Nodes

 All first connections from Hidden Service are done through the
same set of nodes

 Attacker may be running “old trusted nodes”
 Will help against (but not eliminate!) the described attacks
 How to select nodes and determine size of set?

– Random vs. Friendly vs. Layered Helper Nodes

Rendezvous
Point

Hidden
Server

Helper Nodes
2 3

Client

Random Helper Nodes

 Set up a selected set by random
 Must select from a commonly known set of nodes
 Semi-permanent set

– same set every time
– deleted from set only if inactive for a longer period
– adding new members only when all existing are unavailable

 Simple and easy to set up
 Using our attacks we were able to identify Random Helper
Nodes
– Could identify Hidden Server if Helper Nodes themselves are
attacked (root compromise, subpoena,...)

 If a compromised Helper Node is selected the Hidden Service
gains no protection against our attacks

 Some nodes more trusted than others
 Problems if the nodes in the selected set are not operative

– Be available – pick new node by random and will be back at
original threat after DoS attack

 How to select? Do you know the operator? Why do you trust
this node more than other nodes?

 Opens up for analysis of “who trusts who” and “what are their
relation to each other”?

 Using our attacks we were able to identify Friendly Helper
Nodes
– Could identify Hidden Server if Helper Nodes themselves are
attacked (root compromise, subpoena,...)

Friendly Helper Nodes

Layered Helper Nodes

 Pick also the second node from a separate set of nodes. Every
first layer node has its own set of second layer nodes

 Harder to identify all first layer nodes
– must be in all of the second layer groups
– but being just one might identify one point of attack

 More problems with regards to uptime control

Rendezvous
Point

Hidden
Server Layer 1 HN

j

k

3

Client
k's Layer 2 HN

j's Layer 2 HN

Experimental Setup

 Remembering previously described setup
– Using only one active node
– Node was part of Tor network as a middle-man server
– The Node's Client part contacted Rendezvous Point directly

 Running attacks twice against two different Hidden Servers
– not public hidden servers
– located on two different continents

Same node

Client

Rendezvous
Point

Hidden
Service Server 2 3

Direct Connection To RP

Experimental Results

 More than 1 out of 20 circuits went through our node again
 Statistical Attack reveals that over 50% were from the same
IP address (which was the Hidden Service)

 Client/Server Separation finds the IP address in a matter of
minutes

 Two Node Attack was not tested due to lack of time and
resources

Sample
time

Circuits
completed

Timing
attack match

Client/Server
attack

Largest IP
group

2nd Largest
IP group

Server #1 - 1 7.8h 676 37 15 min 46 % 5 %
Server #1 - 2 6.8h 432 26 3 min 54 % 7 %
Server #2 - 1 4.9h 447 31 28 min 71 % 3 %
Server #2 - 2 10.6h 990 56 3 min 54 % 7 %

Experimental Results (2)

 Using the attacks we were also able to locate the Helper
Nodes

 In the first three experiments only two out of the three
specified Helper Nodes were used (during our sampling)

 REMEMBER: This only reveals the location of the Helper
Nodes and does NOT locate the Hidden Server

Circuits
completed

Timing attack
match

Largest
common IP

2nd Largest
Common IP

3rdLargest
Common IP

Test 1 292 8 7 1 0
Test 2 106 6 5 1 0
Test 3 296 13 12 1 0
Test 4 292 10 4 3 3

Get the Code, Run a Node,
Run a Hidden Server!

(or just surf the web anonymously)
 Current Tor system code freely available (3-clause
BSD license)

 Hidden Wiki of Hidden Services available at
http://6sxoyfb3h2nvok2d.onion/

 Tor comes with a detailed specification – Dresden
implemented an independent compatible Tor client in
Java

 Design paper, system spec, code, see the list of
current nodes, etc. at

http://tor.freehaven.net/

Conclusions and Future Work
 Tor and its Hidden Servers have wonderful existing records
and future prospects for protecting online communication

 We have shown Hidden Servers deployed over the Tor
network to be trivially vulnerable to rapid and complete
exposure using only a single hostile Tor node

 We have also performed the first experimental demo of a
predecessor attack on the live Tor network

 We proposed countermeasures to attacks we demonstrated
 Working with the Tor developers, have seen these
implemented along with feature improvements we identified

 In the future, we will be presenting more attacks and
network improvements
– Attacks using multiple nodes, attacks on clients,
authentication mechanisms, finding unknown hidden
services,...

Thanks!

Questions?

